Parabolic Optimal Transport Equations on Manifolds

نویسنده

  • YOUNG-HEON KIM
چکیده

We study a parabolic equation for finding solutions to the optimal transport problem on compact Riemannian manifolds with general cost functions. We show that if the cost satisfies the strong MTW condition and the stay-away singularity property, then the solution to the parabolic flow with any appropriate initial condition exists for all time and it converges exponentially to the solution to the optimal transportation problem. Such results hold in particular, on the sphere for the distance squared cost of the round metric and for the far-field reflector antenna cost, among others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dirichlet Problem for Fully Nonlinear Elliptic Equations on Riemannian Manifolds

We study a class of fully nonlinear elliptic equations on Riemannian manifolds and solve the Dirichlet problem in a domain with no geometric restrictions to the boundary under essentially optimal structure conditions. It includes a new (and optimal) result in the Euclidean case (see Theorem 1.1). We introduce some new methods in deriving a priori C estimates, which can be used to treat other ty...

متن کامل

A Note on Quasilinear Parabolic Equations on Manifolds

We prove short time existence, uniqueness and continuous dependence on the initial data of smooth solutions of quasilinear locally parabolic equations of arbitrary even order on closed manifolds. CONTENTS

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Smooth Conjugacy of Center Manifolds

In this paper, we prove that for a system of ordinary diierential equations of class C r+1;1 ; r 0 and two arbitrary C r+1;1 local center manifolds of a given equilibrium point, the equations when restricted to the center manifolds are C r conjugate. The same result is proved for semilinear parabolic equations. The method is based on the geometric theory of invariant foliations for center-stabl...

متن کامل

Approximate Inertial Manifolds for Nonlinear Parabolic Equations via Steady - State Determining Mapping Yuncheng

ABSTRACT. For nonlinear parabolic evolution equations, it is proved that, under the assumptions oflocal Lipschitz continuity of nonlinearity and the dissipativity of semiflows, there exist approximate inertial manifolds (AIM) in the energy space and that the approximate inertial manifolds are constructed as the graph of the steady-state determining mapping based on the spectral decomposition. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010